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Abstract 

The authors propose a general modeling framework called the General Monotone Model 

(GeMM), which allows one to model psychological phenomena that manifest as non-linear 

relations in behavior data without the need for making (overly) precise assumptions about 

functional form.  Using both simulated and real data, the authors illustrate that GeMM performs 

as well or better than standard statistical approaches (including ordinary least-squares, robust, 

and Bayesian regression) in terms of power and predictive accuracy when the functional 

relations are strictly linear, but outperforms these approaches under conditions in which the 

functional relations are monotone, but non-linear. Finally, the authors recast their framework 

within the context of contemporary models of behavioral decision making, including the lens 

model and the take-the-best heuristic, and use GeMM to highlight several important issues 

within the judgment and decision making literature.  
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The nature of the phenomena typically studied in the behavioral and social sciences rarely 

reflect simple input-output functions; rather, they are often an emergent property of complex 

social, cognitive, and neural systems. Constructs such as intelligence, anxiety, prejudice and 

depression no-doubt correspond to some fundamental property of the human condition, yet they 

also have no tangible corresponding representation in the physical world; they are realized only 

through psychological measurement. The distinction between phenomena and data is subtle, but 

important. Phenomena are the constructs or entities that theories are meant to explain; data are 

observables that we use as proxies of the phenomena (Bogen & Woodward, 1988).  

The critical link between data and phenomena are the set of techniques used for modeling the 

data, as these techniques allow one to state facts about the data that are used to support the theory 

of the phenomena. Given this critical link, any assumptions made in the course of modeling data 

have implications for our understanding of the corresponding phenomena. Unfortunately, for the 

purposes of (statistical) modeling scientists often make strong assumptions about functional 

relationships when describing data, without realizing (or acknowledging) that assumptions about 

one‘s data are not mere abstractions but are statements about the nature of the underlying 

phenomena to which the data correspond (cf. Berk, 2004). 

The link between the statistical modeling of data and the construction of theories about 

phenomena exists for any theory leveraged against real data. While it easy to think of the 

assumptions embodied in statistical models as applying purely at the level of statistical analysis, 

these assumptions are often (either implicitly or explicitly) carried forth into theory. At the 

implicit level, the theoretical conclusions drawn from data are conditioned on the assumptions of 

the statistical analysis upon which the conclusions were based. Violations of assumptions 
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undermine statistical conclusions validity, and by extension undermine the process of theory 

testing.  

However, the link is even more explicit in cases in which the statistical modeling framework 

is used as a description of psychological process. Indeed, it is commonplace for statistical models 

to be exapted as paramorphic models of human information processing (Gigerenzer, 1991). For 

example, the ANOVA framework was used by Norman H. Anderson‘s Information Integration 

Theory (1968, 1970, 1981) and Harold H. Kelley‘s Covariation Theory (1967; 1973) to model 

impression formation and causal attribution. More recently, Bayesian models utilizing principles 

from statistics and machine learning have been imported into psychology under the guise of 

computational theories of mind (Tenenbaum, Griffiths, & Kemp, 2006; Griffiths & Tenenbaum, 

2006; and Griffiths, Steyvers, & Tenenbaum,  2007). Of particular relevance to the present 

article is multiple-linear regression, which has had a long and storied history as a descriptive 

model of human judgment (Brunswick, 1955; Hammond, 1955; Hursch, Hammond, & Hursch, 

1964; Hoffman, 1960; Hogarth & Karalaia, 2007), a prescriptive model for clinical judgment 

(Meehl, 1954; Dawes & Corrigan, 1974; Dawes, Faust & Meehl, 1989), and as a normative 

benchmark against which to compare heuristic models (Karelaia & Hogarth, 2008; Payne, 

Bettman & Johnson, 1993).  

In terms of description, the linear model has been the ―work horse of judgment and decision 

making research‖ (pp. 734 Hogarth & Karelaia, 2007) for over 60 years. It is also intimately tied 

to the evaluation and modeling of heuristic mechanisms put forth by Gigerenzer and colleagues 

(Gigerenzer & Goldstein, 1996; Gigerenzer, Todd, & the ABC group, 1999). Clearly, the 

assumptions embodied in the aforementioned statistical models carry-forth into the 

corresponding theoretical frameworks. Thus, assumptions made for descriptive purposes, such as 
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the assumption of linearity, clearly imply that the explanation of the phenomena requires that 

assumption. However, what if the data, or the underlying phenomena, are not linear? 

The overarching goal of the present paper is to explore the costs of assuming linearity when 

linearity does not hold, and to propose an alternative approach to statistical decision making and 

behavioral decision making that does not require strong assumptions about ones data.  Our 

approach relaxes assumptions about functional form, and therefore allows one to model any 

relationship (linear or non-linear) characterized by monotonicity. In what follows, we first 

review evidence that many psychological phenomena are characterized by non-linearity‘s. We 

then describe a general modeling framework, dubbed the General Monotone Model (GeMM), 

which allows one to model monotone relations without the need for making precise assumptions 

about functional form. Using both simulated and real data, we illustrate that GeMM performs as 

well or better than standard statistical approaches (including ordinary least-squares, robust, and 

Bayesian regression) in terms of power and predictive accuracy when the nature of data is linear, 

but outperforms these approaches under conditions in which statistical relationships are 

monotone, but non-linear. Finally, we recast our framework within the context of contemporary 

models of behavioral decision making, including the lens model and the take-the-best heuristic, 

and use GeMM to highlight important issues within the judgment and decision making literature.  

Non-linearities in Psychological Research 

A core assumption of our work is that the functional relationships that describe data within 

the behavioral and social sciences are often non-linear.  There are many examples of this within 

psychological science. For instance, many psychophysical judgments are approximated by a 

logarithmic function (e.g., the Weber-Fechner law). The relationship between practice and 

skilled performance is approximated by a power function (e.g., the power law of practice, Newell 
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& Rosenbloom, 1981; but see Heathcote, Brown, & Mewhort, 2002). Cumulative retrieval 

functions in verbal-fluency tasks follow a negatively accelerated exponential function (Bousfield 

& Sedgwick, 1944).  In economics, subjective expected utility is non-linearly related to value, 

with the form of the nonlinearity differing for gains, a concave function versus losses, a convex 

function (Kahneman & Tversky, 1979). In the decision-making literature, the relationship 

between perceptions of probability and objective probabilities follows a sigmoidal function 

(DuCharme, 1970; Erev, Wallsten, & Budescu, 1994), whereas the relationship between 

frequency estimates and actual frequency is sometimes exponential (Lichtenstein, Slovic, 

Fischhoff, Layman, & Combs, 1978). Finally, children (Thompson, & Opfer, 2008) and adult 

(Longo, & Lourenco, 2007) perceptions of numbers are systematically distorted, such that 

differences between larger values are compressed relative to smaller values, roughly following a 

logarithmic function. The above examples illustrate the wide variety of data patterns observed in 

psychological science, and therefore serve to ground the central thesis of the work presented 

here, namely, that the behavioral responses researchers often measure are frequently non-linear. 
1
  

To be sure, there is good-evidence that phenomena within psychological science, or at least 

our measurement of them, are often non-linear. Yet the linear model continues to be one of the 

most widely used approaches to both the analysis of data and the construction of theories about 

phenomena. One important cost of making strong assumptions about the nature of the data is that 

one risks missing important statistical relationships that may exist, but which the linear model is 

ill equipped to detect. However, a far more important cost is that one could clearly misrepresent 

                                                 
1
 While in some cases the descriptive label afforded by specifying the particular functional form 

may be useful for theoretical purposes (e.g., identifying laws of practice or psychophysics), in 

the vast majority of cases it is unnecessary for descriptive purposes. Indeed, the examples 

provided above merely represent a sampling of applications in the behavioral sciences where 

work has been done to identify the function that best approximates the data. 
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the correspondence between the data and the phenomena of interest. As Berk (2004) notes, 

―statistical assumptions invoked to justify an analysis of real data are not just statistical 

abstractions but statements about nature. If the assumptions made so that a statistical analysis 

plays through are factual nonsense, one surely has to wonder about the conclusions that follow 

(pg. 2).‖ Put another way, by making rigid assumptions in the modeling of data, one implicitly 

endorses those assumptions as a description of the underlying phenomena. The conclusions 

drawn from any statistical analysis is conditional on having satisfied a set of assumptions, and by 

extension, so too are any theoretical statements regarding the corresponding phenomena based 

on those data.  

If the functions that best describe behavioral regularities are non-linear, then the question is 

how best to model such phenomena. One approach, of course, is to be as precise as possible 

when making assumptions about data and to fit the function directly, for example by fitting non-

linear regression models that estimate particular non-linear functions (e.g., Young, De Leeuw, & 

Takane, 1976). This approach is tantamount to endorsing more stringent assumptions about the 

data. The benefit of this approach is that one may gain a deeper understanding of the phenomena 

of interest. There are drawbacks, however, as one risks overfitting the data, and losing the ability 

to predict new observations accurately, or worse, mischaracterizing the underlying phenomena 

(MacCallum, Cornelius, & Champney, 1979). Moreover, in many cases it is even unreasonable 

to assume that the behavioral responses observed through psychological measurement 

necessarily are linearly related to the underlying psychological variable.  

Partly because of the problems with modeling via curve fitting, a far more common approach 

to modeling psychological data involves applying transformations to the data or ignoring the 

potential for non-linearity‘s, and modeling the data as-if it were linear. This approach is 
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evidenced by the widespread use of the linear model in the analysis of data. However, the linear 

model still suffers from the same problems as does modeling particular functional relationships; 

only in this case scientists restrict themselves to the assumption of linearity rather than one or 

another functional form. Obviously, there may be cases in which both the data and the 

corresponding underlying phenomena are linear, in which case the assumption of linearity is 

entirely justified both in the analysis of the data and in describing the underlying phenomena. 

However, in a vast majority of cases, researchers do not have privileged access to information 

beyond the sample at hand that allows them to validate whether particular assumptions such as 

linearity apply at the level of the population, or whether it is characteristic of the underlying 

phenomena. Nevertheless, because the linear model has been shown to be relatively robust to 

non-linearity‘s and violations of assumptions, it is often used by default (c.f., Cliff, 1996). 

Unfortunately, data in the psychological sciences rarely affords one with the luxury of 

making strong inferences about functional form, linear or otherwise. Making matters more 

difficult is the fact that ―few social scientific theories offer any guidance as to function form 

whatsoever. Statements like y increases with X (monotonicity)‖ (Beck & Jackman, 1998, pp 

597) typify the level of specificity offered by most theories (see also Cliff, 1993). Thus, one 

often can‘t even fall back on theory as a means of justifying particular assumptions.  

In this paper, we advocate a third approach to modeling behavioral data -- one that involves 

making less restrictive assumptions about the data -- and which is appropriate for modeling any 

behavioral regularity characterized by monotonicity. The advantage of our proposed approach is 

that it entails making fewer assumptions, so there is less room for one to violate the assumptions. 

As we show below, relaxing assumptions about functional form and modeling data at the level of 

monotonicity can yield better statistical power than models that assume linearity. Moreover, 
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inasmuch as statistical assumptions carry-forth into ones theory of the phenomena of interest, 

statistical algorithms that make fewer assumptions should be preferred as a matter of parsimony. 

In what follows, we outline one such algorithm that follows this third approach. 

The General Monotone Model 

The fundamental goal within GeMM is to find the coefficients (parameter weights) that 

minimize the lack of fit between the predicted values of Y and the observed values. However, 

unlike least-squares regression procedures, which minimize the squared deviations between the 

predicted and observed values and solve for coefficients that yield the best linear solution, 

GeMM minimizes the number of incorrectly predicted paired comparisons and solves for the 

coefficients that yield the best monotonic (i.e., rank order) solution.  

The power to resolve rank order from paired comparisons stems from the fact that the 

number of constraints on the ordered relationship grows exponentially as a function of N, as 

given by the fact that there are N(N-1)/2 paired comparisons. As pointed out by Shepard (1962; 

1966) in his development of Ordinal Multidimensional Scaling, these ordinal constraints also 

enable one to recover close approximations of the metric (i.e., least-squares) solutions from data 

without computing squared distances. Within the context of GeMM, the constraints forced on the 

procedure by using paired comparisons enable the model to recover close approximations of the 

metric regression coefficients, without using least-squares estimation procedures. The advantage 

of using paired comparisons as opposed to least-squares is that one need not specify the form of 

the relationship a priori, and there is no need to apply (monotone) transformations to the data to 

make it fit the assumptions of the model (Cliff, 1993). Moreover, GeMM‘s estimated coefficients 

are robust to the presence of outliers and the marginal distribution of the criterion variable, 

because the rank order ignores the precise distances between points on the criterion.  The results 
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of our competitive model tests suggest that GeMM is a stable algorithm that predicts well in a 

variety of contexts.  

The basic framework for implementing GeMM involves 3 steps: 

(1) Identify the set of potential models, with each model representing a collection of 

variables to be evaluated, or which are theoretically meaningful. In the most general 

case, one might be interested in evaluating all possible subsets (i.e., models) of k1 

variables. 

(2) Estimate the parameter values for each model that maximizes the correspondence 

between the predicted values and the observed values. In GeMM, the goal is to find 

parameter coefficients that minimize the lack of rank-order correspondence between 

the predicted and actual values, in terms of the underlying dominance structure. 

(3) Correct for model complexity. For the purposes here, we have implemented GeMM 

within the context of the Bayesian Information Criterion (BIC) framework, though 

other definitions of model complexity can be readily applied. 

In its simplest form, GeMM consists of a one-parameter model (i.e., one predictor), which is 

used to predict the criterion of interest. In this context, GeMM is actually identical to the well-

known measure of association, tau, specified by Kendall (1938). Thus, to ease the introduction of 

GeMM, we build the case for GeMM by drawing parallels with Kendall‘s tau, and then extend 

its application to the multiple predictor case. 

To start, assume one wants to know the strength of relationship between two variables, X 

(e.g., height) and Y (e.g., weight). Tau is a valid measure of the strength of any monotonic 

relationship, irrespective of the measurement properties of the data, and does not require strong 

assumptions about functional form (Gonzalez & Nelson, 1996). 
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Tau estimates the degree of monotonic relationship by counting the number of paired 

comparisons for which the ordinal relationship amongst each pair of X‘s is concordant (i.e., in 

agreement) or disconcordant (i.e., in disagreement) with its corresponding pair of Y‘s. For 

example, in estimating the relationship between height and weight, one need only count the 

number of pairs of individuals in which the taller person is heavier than the shorter person, and 

the number of pairs of individuals in which the shorter person is heavier than the taller person. If 

there are 10 individuals in the sample, there are 10(10-1)/2 = 45 such comparisons. Formally, tau 

is defined as, 

(X,Y) = (C-D) / sqrt[(Pairs -Tp)*(Pairs -Tc)] where (1) 

C = Prop(Yi > Yj ∩ Xi > Xj) + Prop(Yi < Yj ∩ Xi < Xj)  (2) 

D = Prop(Yi > Yj ∩ Xi < Xj) + Prop(Yi < Yj ∩ Xi > Xj)  (3) 

Tp=Prop(Yi ≥ Yj ∩ Xi = Xj) + Prop(Yi ≤ Yj ∩ Xi = Xj) (4) 

Tc= Prop(Yi = Yj ∩ Xi ≤ Xj) + Prop(Yi = Yj ∩ Xi ≥ Xj)  (5) 

Pairs = N(N-1)/2 (6) 

In words, C is the proportion of paired comparisons in which the values of X and Y are in 

concordance (i.e., the ordinal relationship between Yi and Yj matches the ordinal relationship 

between Xi and Xj). D is the proportion of paired comparisons in which the values of X and Y are 

in disconcordance (i.e., the ordinal relationship between Yi and Yj is opposite the ordinal 

relationship between Xi and Xj). Tp is the proportion of paired comparisons in which the predictor 

variable is tied and Tc is the proportion of paired comparisons in which the criterion variable is 

tied. P is the total number of paired comparisons. 

Equation 1 can be rescaled to estimate the Pearson product moment correlation, r. Following 

Kendall (1970),  
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r≈sin(/2•)        (7) 

where r is the value of r estimated from tau. Although Kendall‘s tau to r transformation is not an 

unbiased estimate of r, it is a close approximation even at modest sample sizes (N = 50; Rupinski 

& Dunlap, 1996). Importantly, prior work has shown that the standard error of r is greater than 

the corresponding standard error of r calculated on the same samples (Rupinski & Dunlap, 1996), 

but where the variance of both estimates shrink with increases in N. We return to this issue later.  

The advantage of using tau to model statistical relationships is that it is invariant to monotone 

transformation. Thus, tau is robust, in the sense that within the class of monotone relationships, it 

is insensitive to the particular functional form. Moreover, the use of equation 7 to rescale tau 

provides a means of estimating the value of r under any order preserving (monotone) 

transformation that linearizes the data, without the need to actually apply the transformation. The 

advantage of this approach is that it eliminates the need for the researcher to explore the data to 

find the one transformation that enables the data to meet the assumptions of the statistical test. 

Moreover, it also removes any subjectivity, and for that matter implicit bias, toward choosing to 

transform the data or not, and if so which transformation to choose.  

A model-based approach to monotonic association 

Much like one can express the linear relationship between X and Y with a least-square 

prediction model, one can express the monotonic relationship between X and Y in terms of an 

analogous model, as defined by 

Ŷ = βX (8) 

In equation 6, one wishes to find a value for β that minimizes the incorrectly predicted paired 

comparisons. We substitute Ŷ for X to reflect this subtle change: 

(Ŷ,Y) = (C-D) / sqrt[(Pairs -Tp)*(Pairs -Tc)]                (9) 
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C = Prop(Yi > Yj ∩ Ŷi > Ŷj) + Prop(Yi < Yj ∩ Ŷi < Ŷj) (10) 

D = Prop(Yi > Yj ∩ Ŷi < Ŷj) + Prop(Yi < Yj ∩ Ŷi > Ŷj) (11) 

Tp=Prop(Yi ≥ Yj ∩ Ŷi = Ŷj) + Prop(Yi ≤ Yj ∩ Ŷi = Ŷj) (12) 

Tc= Prop(Yi = Yj ∩ Ŷi ≤ Ŷj) + Prop(Yi = Yj ∩ Ŷi ≥ Ŷj)  (13) 

 

With one predictor, only the sign of β matters, which reflects the direction of the relationship of 

Ŷ and Y. Thus, within the context of simple monotonic prediction (equation 8), the goal is to 

assess the degree of monotonic association between Y and its predicted value (Ŷ). Unlike 

predicting metric values, no intercept is necessary because adding a constant to Ŷ (in equation 8) 

would not affect equations 9-13.   

For convenience, it is easiest to think of the β‘s for the class of one-parameter models as 

being constrained to {+1,0,-1}, such that the relationship between Y and its predicted value (Ŷ) is 

always expressed as a positive value of tau, but where the beta coefficient defines the 

relationship. The simple model in (8) can be generalized to include multiple predictors: 

Ŷ = β1X1 + β2X2 + … + βkXk (14) 

In this case, the estimated coefficients allow the variables to differentially contribute to the 

prediction equation to determine the model that maximizes the rank order concurrence between Y 

and Ŷ.  

Equations 9 through 14 provide the computational basis for computing the degree of 

monotonic relationship between an additive combination of the predictors (the X‘s) and a 

criterion variable (Y). Thus, 1 – tau provides the quantity that should be minimized and is at its 

maximum when prediction is at chance and is zero when prediction is perfect (i.e., tau = 1).  

Generating Weights 



 14 

Parameter estimation in GeMM requires searching the parameter space to identify 

coefficients that maximize the value of tau. Given that the search space grows exponentially with 

the number of predictors, the parameter space to be searched is extremely large even with a small 

number of predictors. For example, with k = 9 predictors, there are 2
k=9 

= 512 possible models, 

excluding interaction terms, with each parameter requiring estimation in metric space. 

Fortunately, a number of search algorithms have been developed that make searching complex 

parameter spaces fairly straightforward, including genetic algorithms, simulated annealing, and 

memetic algorithms, among others. Thus far, we have used genetic algorithms (GA), which are 

based on the principles of natural selection, and which are particularly effective in large and 

complex search spaces (Goldberg, 2002). Genetic algorithms consist of several steps: (1) 

generate a random population of parameter vectors, (2) evaluate the fitness of each member of 

the population, (3) identify those models that are ‗best‘ and carry them over to the next 

population (i.e., elitism), (4) stochastically sample models (i.e., parents) from the population in 

the first step according to their fitness, and create a new population of models (i.e., offspring) by 

directly copying the sampled parents or probabilistically recombining the sampled models, and 

then probabilistically add ―noise‖ to the parameters (i.e., mutation) before adding the offspring to 

the new population and (5) return to step 2. This process is implemented iteratively until the 

algorithm converges on a solution. Genetic algorithms are known to function well in complex 

search spaces, though have a tendency to find local minima in some search landscapes. Local 

minima can be cross-checked by generating new random starting populations through repeated 

runs.  

Occams Razor: Trading fit for complexity 
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An important consideration in model building is model complexity:  one often wishes to find 

the best fitting statistical model while minimizing the model complexity (see Myung & Pitt, 

2004). In standard regression contexts, a number of alternatives have been proposed for trading 

model complexity for fit, including Akaike‘s Information Criterion (AIC, Akaike, 1974), 

Schwarz‘s Information Criterion (SIC; Schwarz, 1978, also known as the Bayesian Information 

Criterion, BIC), and the Risk Inflation Criterion (RIC; Foster & George, 1994), amongst others. 

All of these alternatives have been developed within least-squared or maximum likelihood 

frameworks, therefore preventing their straightforward application to non-parametric estimators, 

such as tau. However, the relationship between tau and r stated in equation 5 enables us to work 

within the context of the non-parametric estimator tau, and still utilize model selection 

procedures developed for maximum likelihood estimation. In the analyses that follow, we 

employ a version of the BIC based on R
2
 (see Raftery, 1995), though other model selection 

procedures can be used. Raftery (1995) showed that the BIC could be estimated from 

BIC = N log(1 – R
2
) + k log(N)   (14) 

where N is the sample size, R
2
 is the squared multiple correlation, and k is the number of 

parameters. Substituting equation 5 for the value of R
2
 yields: 

BIC = N log(1 – (sin[pi/2])
2
) + k log(N). (15) 

 Equation 15 is the value of the BIC estimated from the tau to r transformation. However, 

because the value of r shows greater variability than r, we use an adjusted form of r based on 

sample size and the number of predictors used in the regression. Specifically, we define r‘ as,  

r‘= sin[pi/2],    (16) 

where  

=(N-P-1)/N.   (17) 
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 is a weighting function based on the number predictors, P, used in the regression and 

sample size, N.  serves to de-weight the value of tau for smaller sample sizes, and therefore 

reduces the variance of the tau to r transformation. Because  goes to 1.0 as N increases, the 

asymptotic value of the tau to r transformation is preserved.
2
 Substituting r‘ into equation 14 

gives us 

BIC‘ = N log(1 – r‘
 2

) + k log(N).   (18) 

Model selection based on equation 18 (BIC‘) is assessed on the fit of the model to the data as 

given by the degree of monotonic relationship expressed by the tau to r transformation, adjusted 

for model complexity.  The reliance on r
2
’ as opposed to r

2
 results in a model selection 

procedure that is invariant to monotone transformation – a property we illustrate next.  

Competitive model testing: How does GeMM compare to the linear model? 

Equations 9 through 14 provide the computational basis for the GeMM, whereas equation 

18 provides a rule for trading complexity for fit. However, how does GeMM perform relative to 

the linear model? To address this question we conducted a series of modeling competitions and 

evaluated GeMM‘s performance on four criteria: (a) the hit rate (i.e., likelihood of detecting true 

effects), (b) the false-positive rate (i.e., type-I error rate), (c) the ability to accurately estimate the 

                                                 
2
 Analyses using simulated data indicated that model selection using the BIC without weighting tau by omega led to 

a slightly liberal selection criterion as manifested by a higher type I error rate and power (i.e., hit rate) than the OLS-

BIC model selection. Note that our use of omega in equation 16 is intended to correct for overdispersion in the 

estimate of rt’. In addition to using the form in equation 17, we also implemented a version in which omega = (N-k-

1) / N and one in which r was adjusted using the formula for adjusted r-square as given by 1-(1- r
2
)(N-1)/(N-k-1). 

As all of these variations led to approximately the same outcome, we choose to use (N-P-1)/N because it corrects for 

chance at the level of the experiment, rather than at the level of model selection. We note that a variety of alternative 

solutions to overdispersion based on traditional least-squares ML approach may also be appropriate corrections for 

overdispersion in GeMM, including variations of the BIC and the AIC that adjust for variance inflation factor, such 

as the QAIC (Burnham & Anderson, 1998) and the QBIC (Lebreton, Burnham, Clobert, & Anderson, 1992), though 

because these methods involve reliance on least-squares methods to compute a variance inflation factor their use 

seems inappropriate within the GeMM framework. 
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true population parameter values, and (d) the accuracy of predicting new observations (i.e., 

cross-validation).  

Using these four criteria with simulated data, we evaluated three statistical modeling 

approaches: 

1) GeMM with model selection using the BIC‘ (GeMM). Our implementation of GeMM 

utilized the above equations and BIC‘ to determine model fit. Parameter search was 

conducted using a genetic algorithm. The initial population of weight vectors for the genetic 

algorithm included 2
p
 weight vectors estimated via Least Squares estimation, where p is the 

number of predictor variables in the data set. In addition, 2000 vectors were generated by 

randomly perturbing the least-squared estimated weights and 4000 randomly generated 

weight vectors were also included in the initial population.
3
 The GA was run for 10 

generations. At each generation the 1000 vectors with the best fitness value (as determined 

by the BIC‘) were selected for reproduction, with each new generation constrained to 4000 

new members. In addition, the best 500 models from each generation were copied directly to 

the subsequent generation. The cross-over rate for reproduction was set to .85 and the 

mutation rate was set at .02. 

2) Least-Squares with model selection using the Bayesian Information Criterion (OLS-BIC). 

Our implementation of OLS-BIC involved utilizing the genetic algorithm for parameter 

search, and using the BIC as the fitness function. Our implementation of the BIC used 1 – R
2
: 

                                                 
3
 The inclusion of the random weight vectors helps prevent the GeMM from settling into a local 

minimum dictated by the OLS solution. Although the inclusion of the least-squares regression 

weights improved the performance of the OLS-BIC model, these least-square weights had little 

impact on the performance of GeMM. Indeed, we implemented two different genetic algorithms 

for searching the parameter space, and both yielded equivalent patterns. 
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BIC = Nlog(1-R
2
)+klog(N), where R

2
 is the squared multiple correlation, N is the number of 

observations, and k is the number of parameters in the model.  

3) Least Squares regression with model selection using the Wald statistic (OLS-Wald). Our 

implementation of OLS-Wald involved selecting parameters to include in the model based on 

significance testing using a Wald test with α=0.05.  

The above three approaches were evaluated on data generated from a linear equation with 

a continuous multivariate distribution and six predictors, three of which were null, and where the 

other three had coefficients of .5, .3, and .2. Thus, the base equation generating the data for the 

linear environment was, 

Y = .5X1 + .3X2 + .2X3 + 0X4 + 0X5 + 0X6 + 1 + e   (19) 

with e ~ N(0, 1).  For each simulation run two samples were created: one sample was used to 

estimate the model parameters, and the second was used for cross-validation. We manipulated 

sample size across 3 levels (N = 50, 100, and 250). These analyses were then repeated using a 

non-linear environment, which was created by using equation 19 but then raising Y to the power 

of 5 (Y
5
). All analyses included 200 simulation runs. The GeMM and OLS-BIC models were 

conducted with MatLab code available from the authors; the OLS-Wald analyses utilized the 

built-in MatLab multiple-regression function.  

Model comparison using simulated data 

Recovering latent data structures. Figure 1 plots the performance of GeMM in terms of 

the hit and false-discovery rates compared to both versions of least-squares regression for the 

linear environment. Two observations should be evident. First, when data conform to strict 

linearity and multivariate normality, both versions of LS regression have slightly better statistical 

power than GeMM. Thus, as should be the case, GeMM is inferior to the linear model when the 
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data are actually linear, though these advantages are rather modest. For example, when N = 100, 

GeMM shows equivalent power for detecting the parameter with the strongest relationship 

(β = .5), and nearly equivalent power for the second strongest parameter (β = .3). This is 

remarkable given that GeMM ignores the metric properties of the data and fits only information 

contained in the ranks.  

Next we investigated GeMM in comparison to OLS under the realistic assumption that 

data do not typically conform to linearity.  Figure 2 plots the results of the simulations for the 

non-linear environment. In this case, GeMM shows a substantial advantage over the linear model 

across all sample sizes. For example, for N = 100, GeMM shows an improvement of 24% over 

both versions of OLS in detecting the second strongest parameter (β =0.3), and an improvement 

of 24% over OLS-BIC, and a 15% improvement over OLS-Wald, for detecting the weakest 

parameter (β =0.2). Thus, the assumption of linearity made by multiple regression, which is 

advantageous for the linear environment, is a liability for modeling non-linear environments. 

Importantly, inasmuch as the nature of data in psychological science is non-linear, the 

assumption of linearity will be a liability more often than not. GeMM, on the other hand, is 

robust to non-linearity, while showing false discovery rates similar to OLS-BIC.  

Can GeMM provide relatively accurate estimates of the metric population parameters? 

Researchers are often concerned with how much a particular variable contributes to the 

overall predictive accuracy of the model. Therefore, it is useful to know whether GeMM can 

provide reasonable estimates of the population parameters. In other words, how accurately can 

GeMM recover the metric parameters that created the observed data? 
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Figure 3 plots the mean normalized β‘s estimated by each model.
4
 The population 

parameters correspond to .5, .3, and .2 for the first three parameters, and zero for the last three 

parameters. GeMM‘s estimates approximate the population parameters. Moreover, GeMM‘s 

estimates of these parameters are robust across the environments. 

How can GeMM recover the population parameters without capitalizing on the metric 

properties of the data? The answer to this question stems from the fact that the number of 

constraints on the rank order increase exponentially with sample size – a property of the method 

of paired comparisons that Shepard (1962; 1966) argued allowed ordinal multidimensional 

scaling to approximate metric properties of the data. With reasonable sample sizes, the number 

of constraints on the ordered relationship is quite high. For example, with N=100 and no ties, 

there are 100(100-1)/2 = 4,950 paired comparisons required for determining the best parameters 

for optimizing the rank order correspondence between Y and Ŷ. As the number of observations 

in the rank order increases, the less freedom each value has to vary about its true value. Thus, as 

N increases, more precise estimates of the ‘s are required for minimizing rank order inversions. 

In the limit, these estimates should converge toward the true population parameters. Note, 

however, that the ‘s required for minimizing rank order inversions need not correspond exactly 

to the ‘s required for minimizing squared error. Therefore, GeMM‘s estimates are not 

guarunteed to be unbiased estimates of the population parameters, though inspection of Figure 3 

would suggest that they are close approximations. 

Predictive accuracy. 

While Figures 1 and 2 clearly show that GeMM shows equal or better statistical power 

than least-squares regression techniques, how does it do in predicting new observations? To 

                                                 
4
 The parameter value was set to zero for any parameter not recovered by the model. 
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assess this, we compared GeMM to OLS-BIC and OLS-Wald using cross validation. The results 

of these comparisons are presented in Figures 4 and 5, which plots the proportion of 

concordances out of all pairwise comparisons, p(c)=C/[N(N-1)/2]), and the estimated tau for a 

sample size of 100. As can be seen, GeMM shows slightly less predictive accuracy in the cross-

validation sample compared to both OLS procedures in the linear environment, but showed 

modest improvement in predictive accuracy in the non-linear environment. The principle reason 

that GeMM shows better predictive accuracy in the non-linear case is because it is better at 

identifying the true model underlying the data. Taken together, these results indicate that GeMM 

shows little loss of predictive accuracy in the linear environment, despite the fact that it is 

designed to model only monotonicity, and even shows better predictive accuracy than the linear 

model for non-linear environments. 

A natural response to our demonstration above is that the linear model does poorly in the 

non-linear environment because the appropriate model is indeed non-linear. We of course agree 

with this position, but add that it is not always clear when data or the corresponding underlying 

phenomena are nonlinear. Moreover, even if one detects non-linearities within his or her data, it 

is virtually impossible to know precisely what the form of the non-linearities are and to verify 

that the non-linearities are representative of the larger population of scores , as opposed to being 

idiosyncratic (ie., random) properties of ones dataset. Just as few real datasets truly reflect 

multivariate normality (Micceri, 1989), it is also likely that few real datasets truly reflect 

linearity, and even modest, and perhaps even non-obvious departures from linearity can 

undermine statistical conclusions. 

 To illustrate this later point we reanalyzed data from Engle et al. (1999). Engle and his 

colleagues were interested in evaluating the factor structure of various measures of cognitive 
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ability. Our use of Engle et al‘s data is somewhat different: We were interested in using their 

data to evaluate whether GeMM had any practical advantages over various LS alternatives when 

applied to data where the true underlying statistical relationships is unknown.  

Engle et al. (1999) had 133 participant‘s complete 12 measures of cognitive ability. To 

reduce computational time, we used only 10 of the 12 available variables. These included two 

measures of fluid intelligence (Ravens Progressive Matrices, Cattell Culture Free test), two 

standardized achievement tests (verbal SAT and quantitative SAT), three measures of short-term 

memory span (forward span, backward span, keeping track), and three measures of WM-span 

(operation span, reading span, and counting span). The use of cognitive ability data for 

evaluating GeMM was motivated by the assumption that, amongst real-world measured 

variables, measures of cognitive ability generally show reasonable distributional properties and 

approximately satisfy the assumptions of multivariate normality.  

As a first step, we analyzed the data to determine whether it met multivariate normality. 

The results of these analyses were somewhat ambiguous: the Henze-Zirkler test for multivariate 

normality (p=.12) and the Mardia multivariate test of kurtosis (p=.09) failed to reveal significant 

departures from multivariate normality, whereas the Mardia test for multivariate skewness was 

significant (p<.05).
5
 Thus, we concluded that whatever departures from multivariate normality 

were present in the data they were modest at worst, and did not justify transformation. 

We examined the statistical power of GeMM versus the two LS approaches used on the 

simulated data, plus an additional four approaches (see Appendix A), including two versions or 

robust regression, Bayesian regression with normal priors, and ridge regression. 

                                                 
5
 Matlab code for the Henze-Zirkler and Mardia tests was obtained from the matlab file exchange 

(Henze-Zirkler test, Trujillo-Ortiz, Hernandez-Walls, Barba-Rojo & Cupul-Magana, 2007; 

Mardia test, Trujillo-Ortiz, & Hernandez-Walls, 2003). 
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We randomly sampled 50% of the total sample to form an estimation sample, and used the 

remaining 50% as the hold out, or cross-validation sample. For each run, we estimated the model 

on the estimation sample then applied the statistical model to predict observations in the cross 

validation sample. This was repeated 200 times for each approach. For the sake of comparison, 

we used the model based on the full sample as the criterion for evaluating statistical power. 

Using the full sample, all approaches identified a two-parameter model consisting of Q-SAT and 

Cattell‘s culture fair test as the best-fit model for predicting Raven‘s Progressive Matrices. 

However, how did the three techniques compare when the estimation sample was reduced by 

50%? 

The results comparing GeMM to the six alternatives based on least-squares are presented 

in Table 1, which provides the probability of recovering each parameter, and Table 2, which 

provides the fit and cross-validation statistics. As should be clear from examining Table 1, 

GeMM shows a substantial power advantage over OLS-BIC, but especially over OLS-Wald. The 

robust, Bayesian, and ridge procedures fared better than OLS-Wald, but also under-performed 

relative to GeMM and OLS-BIC. In fact, GeMM showed roughly a 16% increase in power over 

its nearest competitor (OLS-BIC) for detecting quantitative SAT, though a slight decrease in 

power (by roughly 3%) for detecting the Cattell culture fair test. Interestingly, closer inspection 

of these two variables revealed that quantitative SAT was slightly non-linearly related to Ravens 

(the best fit quadratic function accounted for nearly 5% more variance than the linear function 

when Q-SAT was regressed onto Raven‘s), whereas Cattell showed little non-linearity.  

Turning now to predictive accuracy, how well did the various procedures fare in cross 

validation? These results are presented in Table 2. As can be seen, GeMM outperformed its 

competitors in terms of monotonic prediction, tau and p(c), while yielding a value for the 
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multiple r that approximated the best-fit linear model (OLS-BIC) and which was higher than the 

multiple r obtained by OLS-Wald, the robust procedures, and Bayes. Thus, despite the fact that 

GeMM ignores information captured by the metric fit, it predicts as well or better than the least-

squared alternatives. The only procedure to outperform GeMM was ridge regression, which is a 

more complex modeling approach that uses all of the available predictors.  

What have we learned from the above analyses? First, it is clear that GeMM seems to be a 

useful tool for statistical modeling. Obviously, under conditions in which the data is actually 

linear, LS regression procedures will be more powerful. However, under the more realistic 

conditions in which the data is monotone, but non-linear, GeMM is more powerful. Second, 

GeMM is robust to departures from linearity in a way that standard regression procedures are 

not. Thus, there is no need to test out various transformations on the data to see which one 

―works‖ and no need for outlier deletion. The implications of these first two points, however, go 

well beyond simple lessons for statistical modeling, as they go to the heart of the fundamental 

goal of science: Making assumptions about the nature of data that do not actually hold, just so a 

statistical analysis can be performed, can ultimately affect ones theoretical description of the 

corresponding phenomenon. The evidence taken in support of a theory about phenomena should 

not rest on questionable assumptions required for the statistical analysis, nor should such 

evidence be conditional on a particular transformation. Ideally, statements about phenomena 

should require as few assumptions as necessary. GeMM allows one to model his or her data 

without recourse to data transformation or the default assumption of linearity. A final finding 

from the initial set of analyses above is that GeMM is as good, or better, in predictive accuracy 

than linear regression – a finding that is of particular relevance for evaluating models of 

behavioral decision making. 
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GeMM as a model of choice. 

Having developed GeMM as a tool for describing and analyzing data, we now turn to 

explicating GeMM within the context of theoretical models of decision-making.  Of note, we 

make no claims as to the psychological plausibility of GeMM as a mechanistic-level description 

of decision behavior. Rather, we view GeMM as serving two complementary purposes. One 

purpose concerns prescriptive decision making and the other the description of decision making 

at the computational level.  When used for prescription GeMM can be viewed as a model of 

choice that combines information in a way that respects the monotonic properties of the data 

when allotted unlimited time and computational resources. The second purpose concerns 

descriptive modeling and judgment analysis; GeMM allows one to describe cue utilization, in the 

same way that multiple regression has been used within the context of the Lens model 

(Hammond et al., 1964; Karelaia & Hogarth, 2008). The use of GeMM in this way has allowed 

us to identify important theoretical issues that hitherto have been largely neglected in evaluating 

heuristic models of human judgment. Before addressing these issues, however, we first describe 

a few alternative approaches to modeling decision making behavior. 

Egon Brunswik‘s (1951; 1955) Lens model framework is one of the most widespread 

approaches to modeling judgment and decision making.  One of the primary goals of the 

framework is to understand how people utilize information in inference tasks.  Hammond et al. 

(1964) were among the first to use multiple-linear regression to parameterize and estimate the 

components of the Lens model, and the use of the linear model for estimating parameters in the 

Lens model subsequently became commonly accepted practice (Hammond, et al., 1964; Hartwig, 

& Bond, 2011; Hastie, & Kameda, 2005; Hursch, Hammond, & Hursch, 1964; Steinmann, & 
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Doherty, 1972; Tucker, 1964; York, Doherty, & Kamouri, 1987; for a review see Karelaia, & 

Hogarth, 2008). 

The Lens model makes two key assumptions regarding decision behavior. First, it is assumed 

that the decision maker has some knowledge of the relationship between the criterion of interest 

(Y) and the cues (xi‘s) as they exist in the environment. Second, judgment about the criterion 

variable is assumed to be based on an additive combination of some or all of the cues known to 

the decision maker. Given these first two assumptions, it is easy to see how the linear model can 

be used to parameterize or estimate which cues a participant utilized in making a set of 

judgments, and how much weight each cue was given. The configuration of cues and their 

respective weightings are taken as the decision maker‘s policy. This policy can then be compared 

to the optimal policy, as given by the parameters estimated on the environment. Clearly, the use 

of the linear model to characterize a decision maker‘s policy entails all of the assumptions 

involved in multiple-linear regression, including that of linearity. Although in the General 

Discussion we describe the Lens model components in detail and reconceptualize them within 

the GeMM framework, we do not use the Lens model in its entirety here.  Instead we evaluate its 

inference engine (i.e., the linear model) in comparison to GeMM on their ability to cross-

validate— to predict a hold-out sample with cue weights estimated on an estimation sample. 

As an alternative model of decision making, Gigerenzer et al. (1991) proposed the 

Probabilistic Mental Models (PMM) theory for modeling the environment-behavior interaction.  

Although this framework builds on the core ideas of Brunswik‘s (1955) Lens model, it does not 

rely on multiple linear regression.  Instead, PMM postulates that people possess a toolbox of 

heuristic mechanisms that exploit the properties of the environment.   One of these heuristic 

mechanisms is Take the best (TTB), which has received a great deal of attention in the literature 
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(see Gigerenzer & Goldstein, 1996; for a critique, see Dougherty, Franco-Watkins, & Thomas, 

2008). Take-The-Best is a three-step algorithm that involves (1) ordering predictor variables 

according to their predictive accuracy (defined as cue validity, see below), (2) searching the 

predictor variables from most to least predictive, and (3) terminating search when a cue is found 

that discriminates between alternatives in a paired comparison.  

Specifically, TTB defines the ‗best‘ predictor in terms of cue validity, where cue validity is 

given by: vi = p[t(a) > t(b) | (ci(a) = +) and (ci(b) = –)].  The validity (vi) of cue i, denoted ci, on 

target variables a and b, t(a) and t(b), is given by the relative frequency with which t(a) > t(b) 

given that a is positive on cue i and b is negative in reference class R. The terms t(a) and t(b) 

correspond to the value of the target variable for case a and b, respectively, where the choice set, 

{a,b}, is a paired comparison.  Note that the formula for cue validity can be re-written in terms of 

the number of paired comparisons in which the predictor and criterion are in concordance 

divided by the number of paired comparisons that are either concordances (C) or 

disconcordances (D): v=C/(C+D)
6
. It should be clear that the formula for cue validity is an index 

of monotonic fit, in the same spirit as tau, but without penalizing the numerator for 

disconcordances and ignoring ties in the denominator. Thus, TTB can be viewed as an alternative 

model to GeMM for capturing monotonicities. 

Take-the-best proceeds by evaluating the cue values in the order of their validity.  If the cue 

discriminates then TTB chooses whichever choice alternative has the positive cue value.  If the 

cue does not discriminate then TTB evaluates the next most valid cue, and so forth.  If none of 

the cues discriminate, then an alternative is chosen at random.  

                                                 
6
 Cue validity re-written in terms of concordances and disconcordances, C/C+D, is similar to the 

well-known gamma correlation, in which the rank order correlation between two variables is 

defined as (C-D)/(C+D)(Goodman & Kruskal, 1979). 
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TTB differs from the linear model in two respects. First, TTB uses only a single cue at a time 

whereas the linear model integrates across cues. Second, the fit criterion for TTB is based on 

monotonicity, whereas the fit criterion for the linear model is based on least-squares. Thus, any 

differences in fit when comparing the linear model to TTB could in principle be due to whether 

the cues were integrated or not, or due to differences in the fit criteria, or both. Indeed, our 

analyses of GeMM in the first half of this paper already showed that the use of the linear model 

in predicting observations in a non-linear monotone environment leads to sub-optimal choice 

behavior. Of course, it remains to be seen whether GeMM outperforms other algorithms that 

model monotonicity, such as TTB.  

We evaluated the predictive accuracy of GeMM relative to the linear model and TTB within 

the context of addressing three theoretical issues. The first issue centers on the topic of 

parsimony. An important construct in evaluating descriptive models of human choice involves 

the need for such descriptions to respect the cognitive limitations of the human decision maker. 

Simon (1956) dubbed this bounded rationality, and it has become an increasingly important 

consideration in the decision-making literature as the focus has turned to describing decision 

making in terms of heuristic mechanisms. We illustrate that modeling the fit/parsimony tradeoff 

with variable selection criteria such as the BIC can shed new light on the issue of bounded 

rationality and its relation to models of cue integration such as the linear model and GeMM.  

The second issue addresses the need to minimize incorrect choices while maximizing correct 

choices. We illustrate that models that focus solely on maximizing correct choices, such as TTB, 

can yield a seemingly paradoxical effect: The number of incorrect choices can increase at a 

disproportionately greater rate than correct choices. The use of BICt‘ for model selection can 

prevent this from happening.  
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The third issue concerns the very simple proposition that choice models based on a linear 

least-squares fit criterion can be ill equipped for accurately modeling choice behavior. Note that 

GeMM‘s goal of maximizing monotonic fit (ie tau) is consistent with the goal of maximizing 

choice, but that the parsimony correction ensures that there is a trade-off between choice 

accuracy and model complexity. Thus, the use of the BIC may come at a cost of choice accuracy, 

even though the goal of GeMM is to maximize tau. The contrast with the linear model is that 

linear least-squares regression does not directly model choice behavior, but rather infers choice 

accuracy from the least-squares fit. We illustrate that the best-fit linear model can yield choice 

accuracy far below that of GeMM, even in cases in which the linear model accounts for a 

substantially greater proportion of the variance.  

Issue 1: A rational model of behavioral choice should trade fit for parsimony. 

A parsimonious algorithm is one that uses as little information as necessary to do the job.  

Simplicity is an important element of Simon‘s bounded rationality and one that we model. 

Ideally, one wishes to maximize the fit or predictive accuracy of an algorithm, while 

simultaneously retaining parsimony. The notion of parsimony has been a central construct of the 

fast and frugal heuristic tradition. Specifically, Gigerenzer and Goldstein (1996) and others argue 

that fast and frugal heuristics require less information upon which to make a decision. Within 

this tradition, parsimony (i.e. frugality) is defined locally for each paired comparison – that is, 

the number cues one must search in order to discriminate between two objects. We refer to this 

form of frugality as local parsimony because it applies locally to individual pairs of objects.  

Yet, local parsimony (or frugality) as used in the study of fast and frugal heuristics is quite 

distinct from the notion of parsimony as used in the statistical and computational modeling 

literatures. Within these literatures, parsimony is defined over the entire class of objects in the 
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judgment set – that is, how many cues are needed to maximize the fit to all of the data (i.e, all 

paired comparisons). This sort of parsimony is made explicit in model selection procedures such 

as the BIC, AIC, and RIC, and is indexed by k in the BIC. We refer to this form of parsimony as 

global parsimony, because it applies globally across the entire data set.  

Unfortunately, past evaluations of TTB and other fast and frugal heuristics have largely 

neglected the issue of global parsimony. While the definitions of local and global parsimony 

seem to imply different metrics for assessing the parsimony of a model, they are closely related. 

For example, within the context of GeMM and multiple-regression, the local parsimony of the 

model is always identical to its global parsimony. That is, for each and every paired comparison, 

GeMM and OLS use an additive combination of k cues. Thus, both the local and global 

parsimony of GeMM and OLS is equal to k. Within the context of TTB, the global parsimony of 

the model sets the upper bound for local parsimony. That is, TTB may require k cues to make 

inferences across the entire class of objects (i.e., all possible paired comparisons), but may only 

use ki* cues on the i
th

 paired comparison, where ki* <= k. Global parsimony, therefore, is given 

by max(ki* ), or the maximum number of cues required for any single paired comparison. In 

most analyses of TTB, researchers report the mean value of k*, the average local parsimony, 

which will often be less than k, the global parsimony. The question we address here is: how does 

TTB perform relative to GeMM and OLS when global parsimony (k) is held constant? 

To illustrate the importance of modeling global parsimony, we reanalyzed the dataset used 

in the initial presentation of the take-the-best heuristic – the city‘s data set. This dataset consisted 

of all cities in Germany with more than 100,000 inhabitants (i.e., the 83 largest German cities by 

population), their population value (the criterion), and 9 binary predictor cues (Gigerenzer & 

Goldstein, 1996).  The predictor cues included: 1) National capital (Is the city the national 
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capital?), 2) Exposition site (Was the city once an exposition site?), 3) Soccer Team (Does the 

city have a team in the major league?), 4) Intercity train (Is the city on the Intercity line?), 5) 

State capital (Is the city a state capital?), 6) License plate (Is the abbreviation only one letter 

long?), 7) University (Is the city home to a university?), 8) Industrial belt (Is the city in the 

industrial belt?), 9) East Germany (Was the city formerly in East Germany?).  

We used a split-half cross-validation procedure to examine the performance of the models 

using three metrics: The value of BICt‘, Kendall‘s tau, and the proportion of concordances. The 

BICt‘ for GeMM was calculated as shown above, where k is based on the number of parameters 

included in the model. The BICt‘ for TTB was computed by calculating the equivalent of 

Kendall‘s tau from the concordances, disconcordances and ties derived from the TTB algorithm. 

The value of k used in the BICt‘ formula was determined by the total number of cues needed to 

resolve all pairwise comparisons. In this sense, k is actually identical to the max ki*. For the 

analyses presented below, we varied the value of k parametrically from 1 to P, where P was the 

number of predictors in the dataset. For example, when k = 1, each model was forced to choose 

the best one parameter model, when k = 2, each model was constrained to find the best 2 

parameter model, and so forth. For each value of k, we conducted 100 monte carlo runs, with 

each run consisting of estimation and cross validation samples. The best fitting parameters for 

GeMM and OLS were estimated on the estimation sample using the genetic algorithm 

(restricting the algorithm to including only k non-zero parameters) and then applying this model 

to the cross-validation sample. For TTB, the estimation sample was used to estimate the cue 

validity of all P predictors, and then to select and order the k best 1-parameter models according 

to cue validity. The cue ordering of the selected k 1-parameter models was then applied to the 

cross validation sample. 
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Of note, within TTB one cannot directly estimate a Pearson‘s r. However, given that TTB 

yields all of the components necessary to compute Kendall‘s tau, it is possible to use the tau to r 

conversion as a proxy for the Pearson‘s r, which allows us to use equation 18 for BICt‘, making a 

straight-forward comparison between TTB, GeMM, and OLS. 

Model comparison results. Figure 6 plots the mean values for BICt‘ as a function of the 

number of predictors included in the model. Two things are of note. First, as illustrated by the U-

shape curve there is a clear trade-off between number of cues and the value of BICt‘. According 

to all three algorithms, on average the best model (lowest BICt‘) derived from the estimation 

sample included 2 parameters. More generally, across the three algorithms, only models with 4 

or fewer parameters consistently showed negative values for BICt‘. Thus, even though accuracy 

continues to improve as more cues are utilized, model selection using the BICt‘ leads us to prefer 

models with 4 or fewer parameters, with the best overall fit shown for models with 2 parameters. 

Second, GeMM provides the best overall fit to the estimation sample, as evidenced by lower 

values of the BICt‘ (more negative).  

Turning now to the assessment of model accuracy, Figure 7 plots the mean percentage of 

concordances, whereas Figure 8 plots mean values of tau as a function of number of cues for 

both the estimation sample (top panel) and the cross-validation sample (bottom panel). 

Consistent with the analysis of BICt‘, GeMM outperforms TTB and OLS-BIC on the estimation 

sample on both measures for all values of k. The results for the cross-validation sample illustrate 

two interesting findings. First, GeMM clearly outperforms both OLS-BIC and TTB for models 

with fewer parameters. In fact, the predictive accuracy of GeMM (percentage of concordances 

and tau) exceeds that of TTB and linear regression when the algorithms are restricted to k< 4, 

indicating that when disconcordances are factored into the assessment of model fit, GeMM is the 
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clear winner. Note that GeMM is the only model optimized on tau, so it is perhaps 

unsurprising that it outperforms TTB and OLS on prediction. However, the critical point 

here is that within least-squares regression, one assumes interval level data. Under this 

assumption, one would expect that maximizing fit at the interval level, presupposes that 

the ordered relationship are well accounted for. As we show below, however, this isn’t 

necessarily the case. Moreover, GeMM still does better than both TTB and OLS in terms of 

percent correct. Thus, after equating the three models for number of parameters and trading fit 

for complexity, GeMM appears to show a reasonable advantage in predictive accuracy. 

Interestingly, the advantage for GeMM is not as evident when evaluating tau (Figure 8).  

Second, when allowed to search all 9 cues TTB outperforms both GeMM and OLS-BIC in 

terms of the proportion of concordances. However, the Kendall‘s tau for the three parameter 

GeMM model (M=0.463) is actually nominally higher than tau for the nine parameter TTB 

model (M=0.461), suggesting that a three-parameter GeMM model is nearly good as a 9 

parameter TTB model when evaluated in terms of the monotone correlation.  Why does TTB 

outperform GeMM and OLS on percent concordance but not tau? This is the focus of Issue 2. 

Issue 2: A rational model of behavioral choice should maximize correction decisions, 

but minimize incorrect decisions.  

Careful inspection of the data in Figures 7 and 8 (cities data) highlights a curious finding: 

The percent of correct inferences continues to increase even after the value of tau plateaus. How 

is this possible? The answer lies in the nature of disconcordances, or incorrect choices. Consider 

the following two equations: 

P(C) = C/(C+D+TP+TC)     (20) 

Tau=(C-D)/(C+D+TP+TC)     (21) 
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Where C, D, and T are defined as concordances, disconcordances, and ties, with ties on 

the predictor denoted TP and ties on the criterion denoted TC. C corresponds to a correct choice, 

whereas D corresponds to an incorrect choice. Equation 20 gives the percent of correct choices, 

as indexed by the concordances. Equation 21 is a variant of the version of Kendall‘s tau in 

equation 9. For any class of objects, there are N(N-1)/2 paired comparisons. Any paired 

comparison that is not a C or a D is either a TP or a TC. As should be clear, the top formula 

includes no penalty for an incorrect choice, whereas the bottom does. Thus, whether a cue leads 

to a tie or to an incorrect choice does not affect the value of P(C). To be clear, cues that 

discriminate between any pair of objects can produce a C or a D; for each paired comparison that 

is resolved as either a C or a D, the value of TP is decreased by one. Thus, theoretically, it is 

possible for P(C) to increase monotonically even if the preponderance of paired comparisons 

resolved by a cue are disconcordant. We argue that any rational decision algorithm should be 

penalized for making incorrect decisions. P(C) therefore provides one with a one-sided 

assessment of predictive accuracy, and can only be interpreted in the context of a metric that 

takes into consideration incorrect choices, such as tau. In this section, we illustrate that the TTB 

heuristic ignores the impact of incorrect choices, whereas GeMM does not when the value of 

BICt‘ is minimized. As we illustrate below, following a decision strategy that focuses solely on 

maximizing P(C) can come at a cost of making a disproportionate number of incorrect choices. 

However, explicitly accounting for incorrect choices in model selection using BICt‘ can remedy 

this problem in both GeMM and TTB. 

To illustrate, consider an environment in which one wishes to predict Y from two 

variables, A and B. Suppose further that cue A results in 100 concordances, 25 disconcordances, 

and leaves 200 dyads tied on the predictor. So, with cue A, PC = 100/(100+25+200)=.307, and 
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Tau = (100-25)/ (100+25+200)=.231. Now consider what happens when a second variable is 

added to the prediction equation that results in 20 additional concordances, but 25 additional 

disconcordances: PC increases to 0.369 (120/(125+50+155), but tau decreases to .215 ([120-

50]/[125+50+155]). In other words, the 6% increase in correct choices was accompanied by a 

nearly 8% increase in incorrect choices. Costs and benefits held equal, it makes little sense for a 

rational decision maker to use cue B because it will result in more incorrect choices than correct 

choices – in this case, ignorance is bliss. Yet, under TTB, cue B would be used and the 

disproportionate increase in incorrect choices would be tolerated. In contrast, when using BICt‘ 

for model selection within GeMM, any cue added to the model must result in a greater number of 

concordances relative to disconcordances for it to be justifiably included in the model. 

As a real-world demonstration of the example given above, we re-analyzed a dataset 

previously used to evaluate the accuracy of TTB that involved predicting professor salaries from 

a set of 5 cues, including rank, years in current rank, year degree was earned, sex, and highest 

degree obtained (see Gigerenzer et al., 1999; Lee & Cummins, 2004). To allow TTB to use all 5 

cues, the data were dichotomized using a median split. Using the full sample (N=52), we ran 

GeMM, OLS-BIC, and TTB constraining the algorithms to using k cues, where k was varied 

from 1 to 5. The results of these analyses are presented in Figures 9 and 10. Two observations 

should be evident. First, there is an inverted u-shaped function relating tau to the number of 

parameters for GeMM, OLS-BIC and TTB, while there is a monotonically increasing function 

relating proportion of concordances to the number of parameters. This suggests that the inclusion 

of more parameters in any of the models does not automatically lead to an improvement in 

choice behavior when incorrect choices are considered. In fact, allowing TTB to search all 5 cues 

instead of the 4 best cues led to an additional 31 correct choices (C‘s), but at a cost of 56 



 36 

incorrect choices (D‘s). Second, and perhaps more interesting, the Pearson‘s r generally showed 

a monotonic increase as a function of the number of parameters. Thus, if one were to simply 

maximize the number of concordances or the Pearson r, it would result in a disproportionately 

large increase in incorrect choices. In contrast, model selection using the BICt‘ obviates this 

problem – the best-fit model in GeMM is the one that maximizes the trade-off between correct 

and incorrect (pair-wise) choices. 

Issue 3: Decision models based on linear least-squares optimization can yield 

relatively poor choice behavior. 

As suggested earlier, the parameters required for minimizing the squared error loss 

function need not correspond to the parameters needed for minimizing rank order inversions. 

That is, it is possible for the best-fit linear model to account for the most variance, in the 

traditional sense, and yet do relatively poorly at recovering the rank order solution. Certainly, 

one should question the validity of any metric solution that fails to recover the more primitive 

property of ordinality, even if it shows a large R
2
. This point has important implications for the 

standard applications of Brunswik‘s Lens model that minimizes the squared error loss function. 

To illustrate this point, we re-analyzed the Cities dataset using both GeMM and OLS-BIC. 

Using the full dataset, the best-fit model based on OLS-BIC consisted of three parameters, 

including the Soccer Team, Exposition site, and National Capital cues, and accounted for 84.8% 

of the variance, but yielded a Kendall tau of 0.517, and concordance rate of only 38.2%. The 

best-fit GeMM model also consisted of three parameters, and included the Soccer team, Intercity 

train line, and Exposition site cues. In contrast to the best fit-linear OLS-BIC model, the best fit 

GeMM model only accounted for 24.2% of the variance. However, inspection of the P(C) and 

tau correlation revealed that GeMM  yielded a much higher rank-order correspondence than 



 37 

OLS, with tau = 0.548 and a concordance rate of P(C) = 55.4%. Thus, despite the fact that OLS-

BIC accounted for over 3 times more variance than GeMM, it performed substantially worse in 

predicting the rank orders and lead to nearly 17% (55.4%-38.2%) fewer correct choices. The 

striking contrast between GeMM and OLS-BIC demonstrates a simple point: The least-squares 

fitting criterion is not designed with the goal of choice maximization. Perhaps even more 

illuminating is the fact that the best-fit OLS-BIC model was actually qualitatively different than 

the best-fit GeMM model, in that they consisted of different predictors!  

While the above findings are of interest for purely statistical reasons, they are also of 

central importance for the development of prescriptive and descriptive models of choice. The 

linear model has long been used as a paramorphic model of human decision making and as the 

normative standard against which human accuracy is compared (Hogarth, & Karelaia, 2007 

Karelaia & Hogarth, 2008). However, it is clearly the case that a decision agent operating under 

the principle of maximizing choice accuracy may utilize different information than a decision 

agent operating under the principle of linear least-squares.  

General Discussion  

We believe that the work presented in this paper illustrates the potential benefits of 

bringing statistical models in line with the precision of psychological theory and the (non-linear) 

nature of the manifest relations in much behavioral data.  Using both simulated and real data we 

demonstrated that GeMM successfully models non-linear relations without the need to make 

(overly) precise assumptions about functional form.  Moreover, when the functional relation in 

the data is strictly linear, GeMM suffers negligible losses in terms of power and predictive 

accuracy.  Thus, there seems to be much to gain and little to lose by adopting GeMM as a model 

of statistical inference.  Beyond the use of GeMM as a statistical model, we argued that GeMM 
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could be used as a prescriptive and descriptive framework of judgment and decision making, and 

then illustrated this usefulness in indentifying several critical issues within behavioral decision 

theory. 

Given the potential for linearity‘s and non-linearity‘s in one‘s data, it is instructive to 

compare the costs and benefits of assuming linearity with the costs and benefits of modeling data 

under the less-restrictive assumption of monotonicity. That is, what does one give-up by 

adopting the less-restrictive assumption of monotonicity when the true state of the data is linear? 

And, what does one give-up by adopting the assumption of linearity when the true state of the 

data is non-linear? The analyses presented in this paper suggest that the answer to the first 

question is ‗very little‘. As we showed in the first set of analyses, even when data meet the 

assumptions of linearity, one has little to lose by adopting the less-restrictive assumption of 

monotonicity and modeling data with GeMM. In contrast, the cost of assuming linearity when 

linearity does not hold can be considerable. Indeed, as we showed using both simulated and real 

data, applying the linear model to non-linear data can lead to a substantial reduction in statistical 

power and poorer predictive accuracy. 

One key insight gleaned from our development of GeMM is that it is possible to model any 

monotonic statistical relationship without making a priori assumptions of functional form. This is 

made possible by exploiting the transformation on Kendall‘s tau within a model-based 

framework. The tau to r transformation essentially allows one to model any monotonic nonlinear 

relationship as though it was linear, but without fishing for the transformation that best 

approximates linearity. This is a major insight, in that it frees the researcher of deciding whether 

or which transformation to use on the criterion, and eliminates the need to conditionalize 

statistical conclusion on the choice of a particular transformation, for example when two 
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different transformations yield different conclusions. Moreover, because GeMM operates at the 

level of rank correlation rather than squared deviations, the presence of outliers or extreme 

scores is of less concern. In our view, using data transformations to reshape the data so that they 

appear to fit the assumptions of a statistical model is a bit like forcing a round peg into a square 

hole. Rather than changing the data to fit the statistical algorithm, it makes more sense to use an 

algorithm appropriate for the data at hand (see Cliff, 1996). GeMM is an appropriate approach to 

statistical modeling of psychological data because it does not require one to adopt overly 

restrictive assumptions about functional form that may or may not be represented in the data or 

population. 

An important property of GeMM is that the fit criterion is based on the minimization of 

rank-order inversions. The idea of minimizing rank inversions is consistent with the goal of 

many applied researchers who seem less concerned about predicting precise quantitative values 

than predicting relative values (i.e., rank order, cf. Cliff, 1993; 1996). For example, in personnel 

selection contexts, it is advantageous to select individuals according to the rank order of 

applicants, without regard to the quantitative properties of the distribution of scores (Schmidt, 

1995; see also Campion, Outtz, Zedeck, Schmidt, Kehoe, Murphy, & Guion, 2001). Moreover, 

even when quantitative values are available, they are often re-expressed in terms of their ordinal 

or rank properties, as exemplified by the use of percentile ranks when interpreting standardized 

test scores such as the WAIS or GRE, and the use of linear rank selection in personnel selection 

decisions (Schmidt, 1995).  

Given that the goal of many applied domains is really to identify ordinal relationships, it 

makes sense to model this property directly, rather than infer it from a least-squares solution. 

Importantly, in many real world applications even a small difference in accurately predicting 
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rank orders can yield large economic or health outcomes. For example, consider health policies 

designed to identify individuals most at risk for developing breast cancer, or policies designed to 

identify individuals prone to obesity or drug abuse. The difference of 2% in predicting the rank 

orders can mean the difference between catching or missing critical high-risk cases. As our 

analysis of the cities data under Issue 3 illustrates, it is possible for the linear model to 

substantially underperform GeMM in predicting rank orders, even when the value of R-square is 

substantially higher than that estimated by GeMM. Thus, a high-value of R-square derived from 

application of the linear model and assuming interval-level data may give one the illusion that 

the ordinal properties of the data will follow. However, this need not be the case since the least-

squared solution is designed to minimize squared error, even if it comes at a cost of mis-

predicting the ordinal properties of the data. In as much as prediction of ordinal properties is an 

applied goal, then in our opinion it makes more sense to model the ordinal properties directly, 

rather than to infer it from the best-fit linear model. 

Aside from its implications for statistical decision making, our development of GeMM 

also highlighted a number of issues relevant to theories of behavioral decision making. For 

example, we highlighted the need to control for global model complexity when comparing 

different decision models. In as much as parsimonious models are preferred, parsimony should 

be explicitly accounted for when assessing model fit. We illustrated that the predictive accuracy 

a popular heuristic model of decision-making, take-the-best (TTB), depends on its global 

complexity (how many cues it is allowed to search), and that TTB actually does worse than 

GeMM when global complexity is explicitly modeled. Our conclusion, therefore, is that non-

compensatory decision heuristics like TTB can be advantageous, but only when the amount of 

information (cues) is unconstrained.   
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A second issue highlighted by our development of GeMM is the need for decision models 

to explicitly account for incorrect choices as well as correct choices. In past work on take-the-

best, the focus of researchers has been on the proportion of correct choices made by TTB. 

However, the singular focus on correct choices obscures the curious property that more 

‗accurate‘ models may also commit more incorrect choices. We illustrated that it is possible for 

the incremental validity of particular cues to be negative, in the sense that using these cues can 

lead to more incorrect choices than correct choices.   

Finally, a third issue highlighted by GeMM is that decision models based on linear least-

squares optimization can appear to perform well when assessed in terms of R
2
, but yield 

relatively poor choice behavior. This finding illustrates one of the primary limitations of the 

linear model as a model of choice – it is not designed with the goal of predicting the ordered 

relations and therefore, will not tend to maximize (pair-wise) choice accuracy. Rather, its goal is 

to minimize squared error, even if that comes at the cost of choice accuracy.  

While the above findings illustrate the contribution of GeMM to understanding models of 

decision making, the implications of GeMM for behavioral decision theory goes well beyond 

highlighting these three issues.  Indeed, as we illustrate below, GeMM allows for a fundamental 

reconceptualization of a variety of theoretical frameworks within the decision sciences.  We 

outline of few of these extensions next. 

Extensions to models of behavioral choice. 

 

The analyses presented throughout this paper illustrate that GeMM is useful both as a 

model for statistical inference and as a descriptive model of behavioral choice. However, these 

analyses have only scratched the surface of its generality. In this section, we outline some natural 

extensions of GeMM and illustrate its relationship to various models of behavioral choice. 
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The majority of the work presented throughout the second half of this paper has focused 

on two seeming different approaches to judgment and decision making: the Lens model, as 

proposed by Brunswik, and a heuristic-based approach, as advocated most recently by 

Gigerenzer & Colleagues (Gigerenzer, Todd, & The ABC Research Group, 1999; Gigerenzer & 

Goldstein, 1996; Goldstein & Gigerenzer, 2002). Both of these approaches can be re-

conceptualized within the context of GeMM, and doing so highlights a number of relationships 

between heuristic algorithms and the Lens model approach, while also allowing us to identify 

novel variants of the heuristics.  

The Monotone Lens model.  

One of the most widely used frameworks for modeling decision behavior is the Lens 

model (Hammond, et al., 1964; Hartwig, & Bond, 2011; Hastie, & Kameda, 2005; Hursch, et al. 

1964; Steinmann, & Doherty, 1972; Tucker, 1964; York, et al., 1987; for a review see Karelaia, 

& Hogarth, 2008). The Lens model utilizes multiple linear regression to model both the 

statistical relationships in the environment and how people use information in inferring 

properties of the environment (i.e., judgment analysis; for a review see Karelaia and Hogarth , 

2008). Indeed, in a recent review of Lens model work, Karelaia and Hogarth (2008) identified 

over 200 published and unpublished studies using the lens model. This framework is presented in 

Figure 11 and Table 2 presents interpretations of model constructs. However, we argue that the 

common use of linear regression in modeling human judgment is misplaced because there are 

many potential sources of non-linearity‘s either in the environment (i.e., the true relationships) or 

in the decision making process (Einhorn, 1970; Einhorn, Komorita, & Rosen, 1972; Kim, Yang, 

& Kim, 2008).  
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What are the implications if the state of nature is in fact not strictly linear, but conforms to 

the less special case of monotonicity? In such a case, the linear model is the wrong model and is 

therefore estimating the wrong weights on the both the ecology and policy dimensions of the 

Lens model. Thus, deviations in the weights estimated on the environment, and the weights 

estimated on the judge may arise either because the weighting scheme adopted by the judge is ill-

calibrated with respect to the environment or because the weights identified by the linear model 

are estimations based on phantom properties of the environment--properties that may not exist! 

That is, perhaps the linear model is the wrong statistical model against which to compare and 

model human behavior.  In as much as the manifest data is monotonic, but not linear, the weights 

estimated by multiple regression may poorly characterize the judgment policy adopted by the 

decision maker or the optimal policy suggested by the environment, or both. As illustrated under 

Issue 3, it is even possible for the best-fit linear model to be qualitatively different from the best-

fit monotone model. 

The obvious solution to this problem is to adopt a modeling approach that captures 

monotonic properties, but does not assume strict linearity. Thus, we propose GeMM as a 

paramorphic model of human judgment and decision making.  Table 3 recasts the common Lens 

model decomposition in GeMM terms. For the monotone Lens model in Table 3 we have chosen 

to use the Pearson correlation coefficient estimated via Kendall‘s tau.  Although we could have 

just of as easily have captured the Lens model components with other measures of monotone 

association, the tau estimated Pearson correlation can be interpreted as the standard Lens model 

with the linear estimate being derived under the less restrictive assumption of monotonicity.   

It is also important to point out that the traditional use of the Lens model has essentially 

ignored the issue of model complexity.  Our monotone Lens model allows for a direct 
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comparison between any model from which paired comparison data can be obtained, including 

the linear model relying on the BICt‘. Thus, the fit-parsimony tradeoff is explicitly considered in 

terms of the BICt‘.  

In summary, there are many compelling reasons to prefer a monotone lens model.  First, 

linearity is a special case of monotonicity and as illustrated by the simulation work, GeMM 

shows little loss in statistical power when data is linear.  The monotonicity assumption also 

allows for more flexibility and robustness as illustrated in simulation by GeMM‘s substantial 

power advantage as data becomes increasingly nonlinear, but remains monotonic. Finally, when 

assuming linearity and using least-squares optimization, one implicitly endorses a fit metric that 

tolerates rank inversions in order to minimize squared deviations. This tradeoff is not defensible 

in our opinion because rank is a more fundamental measurement property than distance.  

Heuristics as monotone decision algorithms.  

While GeMM can be considered a monotone version of the lens model, it can also be viewed 

as a general framework for organizing both compensatory and heuristic models of decision 

making. Specifically, several decision models are closely related to or can be expressed as 

special cases of GeMM; moreover, our development of GeMM highlights several variations on 

existing heuristic models and suggests new models. 

Table 4 presents several decision models that fit within the GeMM framework: The lens 

model, Franklins rule, Dawes‘ rule, Take the best, and Minimalist. For example, Take-the-best 

can be viewed as a variant of GeMM in which one searches through a set of one-parameter 

models from best to worst until one model discriminates. That is, define a regression model 

based on GeMM with P parameters (cues). TTB is related to GeMM in that there are P one-

parameter models nested within GeMM‘s P parameter model. TTB differs from GeMM only in 
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the sense that the decision maker is assumed to order the P 1-parameter models by validity and 

search them one at a time. Both Dawes‘s (the equal weights additive rule, or ADD) and 

Franklin‘s rule (weighted additive rule, or WADD) can also be considered special cases of 

GeMM. Both assume that the decision maker chooses between alternatives by combining cues. 

In the case of Dawes‘s rule, the cues are combined additively (summed) with equal weight. In 

the case of Franklin‘s rule, the cues are weighted by importance before summing (multiple 

regression is Franklin‘s rule where the weights are optimized via least-squares estimation). 

Pairwise choice in both models assumes that the decision maker chooses the alternative with the 

highest sum.   WADD and ADD have been investigated extensively as models of choice (Broder, 

2002; Broder & Schiffer, 2003; Payne, Bettman, Johnson, 1992, 1993). Conceptualized within 

GeMM, these are merely saturated models that assume that participants combine all possible 

cues (with different weighting schemes) in choosing between alternatives. Note that none of 

these heuristics explicitly attempt to maximize choice accuracy.  

Also represented in Table 4 is the Borda count, which is a voting rule for social 

preferences in which N choice options are ranked by individuals, where the highest ranked 

alternative is assigned a ranking of N, the second highest ranked alternative is assigned a value 

of N-1, and so forth (Borda, 1784). The winner of a Borda count is the alternative with the 

highest summed rank. The Borda count is easily expressed as a special case of GeMM, where the 

predictor variables are viewed as voters, and each voter provides a ranking of all N alternatives. 

Within GeMM, any dataset can be expressed as a Borda count by (a) rank transforming the 

predictors, (b) assigning unit weights to the predictors such that each ‗voter‘ is counted equally, 

and (c) summing across all predictors. The alternative with the highest summed ranks is the 

Borda winner. A natural extension of the Borda count suggested by GeMM that is not 
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represented in Table 4 is a weighted Borda count, where each ‗voter‘ is weighted by a validity 

coefficient derived from a test sample. A reasonable application of the weighted Borda count 

would involve any prediction task where judges with various levels of expertise or knowledge 

are predicting the outcome of a contest. Weights estimated from an estimation sample could be 

taken as an index of each judge‘s validity (c.f., Ho, Hull, & Srihari, 1994). 

In addition to providing an organizing framework for the above choice rules, GeMM also 

highlights several novel variations of these heuristics. In particular, each of the models described 

above can be coupled with a model selection procedure that trades fit for parsimony. For 

example, TTB-Select and Minimalist-Select use the BICt‘ to reduce complexity. As well, these 

models can be naturally extended to include any possible parameterization, so that the TTB 

search algorithm can operate on any ordered set of models containing k>=1 parameters (TTB-

GeMM and Minimalist-GeMM). For example, under a GeMM formulation, one can order all 

possible 2-parameter models and search them sequentially using TTB‘s search and stopping 

rules. Precisely how to define the value for number of parameters (K) and how to select amongst 

competing models is yet unclear, so these are left blank in the table. Nevertheless, these are valid 

decision heuristics that should be explored. 

Summary 

Fundamentally, the work presented in this paper illustrates the potential benefits of 

modeling psychological data without recourse to making strong, and often untenable, 

assumptions about ones data, and without the need for employing data intervention strategies 

aimed at bringing the data in line with the assumptions of a statistical model. Rather, we argue 

that a more appropriate approach to data analysis is to utilize a modeling approach that respect 

the fundamental properties of one‘s data.  GeMM accomplishes just this. GeMM is based on the 
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principle of monotonicity, and as such requires much less restrictive assumptions about the 

modeled relationship. Thus, GeMM permits one to capture the (non-linear) nature of the 

manifest relations that exist in much behavioral data and to model the data at a level of precision 

that is consistent with the precision of most psychological theories.  
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Figure 1. Hit and false alarm rates as a function of sample size for GeMM, OLS-BIC, and OLS-

Wald for a Linear environment. 
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Figure 2. Hit and false alarm rates as a function of sample size for GeMM, OLS-BIC, and OLS-

Wald for a Non-linear environment. 
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Figure 3. Mean normalized parameter estimates of recovered parameters for GeMM, OLS-

NHST, and OLS-BIC in the linear and non-linear environments for sample size N=100. 
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Figure 4. Proportion of concordances for the estimation and crossvalidation sample in the linear 

and non-linear environments for sample size N=100. 
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Figure 5. Mean Kendall tau correlations for the estimation and crossvalidation sample in the 

linear and non-linear environments for sample size N=100. 
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Figure 6.  
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Figure 7. Probability of concordance for the estimation and cross-validation sample for the 

Cities Data. 
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Figure 8. Mean Kendall tau for the estimation and cross-validation sample for the Cities 

Data. 
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Figure 9. Mean BICt` plotted as a function of the number of parameters (k) for each 

strategy for the Salary Data. 
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Figure 10. Mean concordances (top panel) and mean Tau’s (bottom panel) plotted as a 

function of the number of parameters (k) for each strategy for the Salary Data. 
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Figure 11. Illustration of the classic Lens model framework.  The Lens model parameters 

illustrated are described in Table 3. 
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Table 1. Probability of recovering each parameter off of N/2 observations. 

 O-span R-span V-SAT Q-SAT 

B-

Span F-Span K-Track C-Span Cattell 

GeMM 0.04 0.075 0.075 0.865 0.02 0 0.095 0.085 0.965 

OLS-BIC 0.05 0.035 0.03 0.71 0.06 0.005 0.135 0.095 1 

OLS-Wald 0 0.05 0 0.435 0.02 0.07 0.045 0.05 1 

RLS Wald  

(Huber) 0 0.05 0.005 0.575 0.005 0.045 0.02 0.045 1 

RLS Wald 

(BiSquare) 0 0.07 0.01 0.585 0 0.04 0.015 0.055 0.985 

Bayes-Wald 0 0.028 0 0.389 0.011 0.072 0.038 0.022 1 

Ridge 1 1 1 1 1 1 1 1 1 
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Table 2. Fit indices and cross-validation statistics for all seven regression procedures. 

  BICt‘ BIC P(c) Tau 

 

r 

 



k  

GeMM Estimation -32.4973 -40.4052 0.7422 0.5633 0.7255 2.22 

 

Cross-

Validation   0.7148 0.5071 0.6989  

        

OLS-BIC Estimation -29.6933 -42.7902 0.7312 0.5432 0.7305 2.12 

 

Cross-

Validation   0.7122 0.5042 0.6998  

        

OLS-Wald Estimation -25.7679 -40.9317 0.6998 0.5108 0.7158 1.67 

 

Cross 

Validation   0.6875 0.4861 0.6778  

        

Huber-RLS 

Wald Estimation      -26.9341 -41.4593 0.7093 0.5214 0.7200 1.74 

 

Cross-

Validation   0.6981 0.4988 0.6876  

        

Bi-Square-

RLS Wald Estimation -27.028 -41.1566 0.7094 0.5227 0.7188 1.76 

 

Cross-

Validation   0.6985 0.5002 0.6876  

        

Bayes-OLS 

Wald Estimation -27.0316 -41.3713 .6943 .5060 .7144 1.56 

 

Cross-

Validation   .6856 .4875 .6821  

        

Ridge 

Regression Estimation -1.427 -9.7332 .7368 .5472 .7144 9 

 

Cross-

Validation   .7195 .5120 .6973  



 74 

 

 

p(c) = percent concordance, Tau = Kendall‘s tau correlation, r = Pearson‘s r correlation, k = 

number of parameters in model, BIC=Bayesian Information Criterion, BICt‘ = Bayesian 

Information Criterion based on the weighted tau to r transformation, 
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Table 3. Descriptions of the Lens Model Components in the original linear model and recast 

within GeMM. 

 

Linear Lens 

Model 

Component 

Standard Description Monotone 

Lens Model 

Component 

Monotone Description 

 

Cues are assumed to be metric. 
  

Cues are assumed to be 

monotone. 

 

Best fit linear regression 

coefficients for each cue 

regressed on the judge's 

evaluations.  The number of 

statistically significant cues is 

often interpreted as the frugality 

or complexity of the judge's 

policy and the magnitude of the 

linear regression coefficients 

are interpreted as the extent to 

which the cues were 'utilized' in 

judge's policy. 

 
Best fit monotone regression 

coefficients, estimated via 

GeMM for each cue regressed 

on the judge‘s evaluations.  

The number of cues in the 

best fit model, using BIC  to 

trade fit and complexity, can 

be interpreted as the frugality 

of the judge‘s policy and the 

magnitude of the monotone 

regression coefficients are 

interpreted as the extent to 

which the cues were ‗utilized‘ 

in the judge‘s policy. 

 

Best fit linear coefficients for 

each cue regressed on the 

criterion.  The statistical 

significance and the magnitude 

of the linear coefficients are 

interpreted as the 'validity' of 

the cues to predict the criterion 

variable. 

 
Best fit monotone regression 

coefficients, estimated via 

GeMM for each cue regressed 

on the criterion.  The number 

of cues in the best fit model, 

using BIC to trade fit and 

complexity, and the 

magnitude of the monotone 

regression coefficients are 

interpreted as the ‗validity‘ of 

the cues to predict the 

criterion variable. 

 

Judgments are assumed to be 

metric.  
Judgments are assumed to be 

monotone. 

 

The criterion variable is 

assumed to be metric.  
The criterion is assumed to be 

monotone. 
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The predicted values of the 

best-fit linear model of the cues 

regressed on the judge's 

judgments. 

 

The predicted values of the 

best-fit GeMM model of the 

cues regressed on the judge's 

judgments 

 

The predicted values of the 

best-fit linear model of the cues 

regressed on the criterion 
 

The predicted values of the 

best-fit GeMM model of the 

cues regressed on the criterion 

 

Coefficient of determination of 

the best-fit linear model of the 

cues regressed on the judge's 

judgments.  Also, the Pearson 

correlation coefficient between 

the predicted values of the 

judge's judgments, estimated 

via linear regression, and the 

observed judgments.  The 

metric is often interpreted as 

the ability or fit of the linear 

model to "capture" the 

judgment process.  

 

The Kendall‘s tau estimate of 

the Pearson product moment 

correlation coefficient, r, 

between the predicted values 

of the judge's judgments, 

estimated via GeMM 

regression, and the observed 

judgments.  The metric can be 

interpreted interpreted as the 

ability or fit of the monotone 

model to "capture" the 

judgment process.   

 
Coefficient of determination of 

the best-fit linear model of the 

cues regressed on the criterion.  

Also, the Pearson correlation 

coefficient between the 

predicted values of the 

criterion, estimated via linear 

regression, and the observed 

criterion.   The metric is often 

interpreted as the ability or fit 

of the linear model to "capture" 

the ecology. 

 

The Kendall‘s tau estimate of 

the Pearson product moment 

correlation coefficient, r, 

between the predicted values 

of the criterion, estimated via 

GeMM regression, and the 

observed criteria.  The metric 

can be interpreted as the 

ability or fit of the monotone 

model to "capture" the 

ecology.   

 

The Pearson correlation 

between the judge's judgments 

and the observed criterion.  The 

measure is interpreted as the 

quality or accuracy of the judge 

to predict the criterion values in 

terms of variance-accounted-

for. 

 

The Kendall‘s tau estimate of 

the Pearson product moment 

correlation coefficient r, via 

GeMM regression, between 

the criteria and the judge‘s 

judgments.  The measure can 

be interpreted as the quality or 

accuracy of the judge to 

predict the criterion values.   

 

Often referred to as match, the 

correlation between the 

predicted values of the judge's 

judgments and the predicted 

values of the criterion. 

 

The monotone surrogate of 

match, the Kendall‘s tau 

estimate of the Pearson 

correlation between the 

predicted values of the judge's 
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judgments and the predicted 

values of the criterion 

estimated via GeMM. 

 

The inter-cue correlations 

between the predictors or cues.     

The Kendall‘s tau estimate of 

the Pearson product moment 

correlation coefficient, r, 

between the predictors or 

cues.  In process terms, cues 

that are highly correlated are 

assumed to substitute for each 

other --a process referred to as 

vicarious functioning. 
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Table 4.  Decision models and relation to GeMM. 

 

 

Model Description Number of 

parameters (K) 

Model selection 

procedure 

Take the best Define all possible 

1-parameter models. 

Order models 

according to 

predictive validity. 

For each paired 

comparison, search 

models from best to 

worst until one 

discriminates 

between the pair of 

options. 

K = Number of 

models required to 

discriminate all 

possible dyads. 

None. Use all 

possible models 

sequentially. 

Take the Best- 

select 

Define all possible 

1-parameter models. 

Order models 

according to 

predictive validity. 

Select subset of 

models that 

minimize BIC. For 

each paired 

comparison, search 

selected models 

from best to worst 

until one 

discriminates 

between the pair of 

options. 

K = Number of 

models required to 

minimize the BICt‘. 

Estimate tau based 

on concordances 

and 

disconcordances. 

Transform tau to r, 

use equation 18 or 

any other model 

selection procedure 

that trades 

parsimony for fit 

Minimalist Define all possible 

1-parameter models. 

For each paired 

comparison, 

randomly choose 

model without until 

one discriminates 

between the pair of 

options. 

K = Number of 

models required to 

discriminate all 

possible dyads. 

None 

Minimalist - Select Define all possible 

1-parameter models. 

Select subset of 

K = Number of 

models required to 

minimize the BICt‘ 

Estimate tau based 

on concordances 

and 
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models that 

minimize BIC. For 

each paired 

comparison, 

randomly choose 

model from selected 

set until one 

discriminates 

between the pair of 

options. 

disconcordances. 

Transform tau to r, 

use equation 18 or 

any other model 

selection procedure 

that trades 

parsimony for fit. 

Franklin‘s Rule 

(Weighted additive 

model) 

Define weight 

vector. Sum product 

of weight vector by 

data vector. 

*Multiple regression 

is the special case 

where weight vector 

is optimized my 

minimizing least 

squares. 

K= total number of 

variables in dataset 

 

Franklin’s Rule - 

Select 

Define weight 

vector. Sum product 

of weight vector by 

data vector. 

*Multiple regression 

is the special case 

where weight vector 

is optimized my 

minimizing least 

squares. 

K = Number of 

variables included 

in the model with 

the lowest BICt‘. 

Estimate tau based 

on concordances 

and 

disconcordances. 

Transform tau to r, 

use equation 18 or 

any other model 

selection procedure 

that trades 

parsimony for fit. 

Dawes‘ Rule  

(Unit weight 

additive model) 

Set weight vector to 

unit values (1,0,-1). 

Sum product of 

weight vector by 

data vector 

K= total number of 

variables in dataset 

None. Use all 

predictor variables 

simultaneously. 

Dawes’ Rule - 

Select 

Set weight vectors 

to unit values. Sum 

product of weight 

vector by data 

vector 

K = Number of 

variables included 

in the model with 

the lowest BICt‘. 

Estimate tau based 

on concordances 

and 

disconcordances. 

Transform tau to r, 

use equation 18 

Borda count Set weight vectors 

to unit values. Rank 

transform the 

predictors. Sum 

product of weight 

K = Number of 

predictors (voters) 

in the dataset 

None. Use all 

predictor variables 

simultaneously. 
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vector by data 

vector 

TTB-GeMM Define all possible 

K>=1 parameter 

models. Order 

models according to 

BICt‘. For each 

paired comparison, 

search models from 

best to worst until 

one discriminates 

between the pair of 

options. 

- - 

Minimalist-GeMM Define all possible 

K>=1 parameter 

models. For each 

paired comparison, 

randomly choose 

model without until 

one discriminates 

between the pair of 

options. 

- - 
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Appendix A 

The model competition for modeling the Engle et al. (1999) cognitive ability data included 

GeMM, OLS-BIC, OLS-Wald, and four additional techniques including two versions of robust 

regression, one using the Huber weighting function and a version using the bisquare weighting 

function, Bayesian regression with normal priors, and ridge regression. Robust regression is a 

technique used in contexts for reducing the impact of extreme scores, and is therefore less 

sensitive to the presence of outliers. Both robust procedures were implemented within MatLab 

using a WALD test. The Bayesian and ridge regression procedures were implemented in SAS, 

with code written by the authors. The Bayesian model used normal priors with variable selection 

based on the Wald 95% credible interval. We implemented Ridge Regression, which is a variant 

of OLS that applies a shrinkage penalty, Lambda, to the predictors.  Although this penalty 

slightly biases the parameter estimates, it can lead to substantial decreases in their variance when 

the predictors are highly collinear.  We employed a variant of the BIC (see equation A1 ) to 

select the Lambda for each estimation sample that optimally traded fit (RSS) with a measure of 

flexibility (effective df).  The parameter estimates associated with the best-fit Lambda were then 

applied to the cross-validation sample.           

 

BIC λ = log RSS λ + df λ / n log n, where df λ = trace[X(X
t
X + I)

-1
X

t
]  eq. A1 

 

For all procedures, we randomly sampled 50% of the total sample to form an estimation 

sample, and used the remaining 50% as the hold out, or cross-validation sample. For each run, 

we estimated the model on the estimation sample then applied the statistical model to predict 

observations in the cross validation sample. This was repeated 200 times for each approach. For 

the sake of comparison, we used the model based on the full sample as the criterion for 
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evaluating statistical power. Using the full sample, five approaches (OLS-BIC, OLS-Wald, 

Huber-RLS, Bi-Square RLS, and Bayesian-Wald identified a two-parameter model consisting of 

Q-SAT and Cattell‘s culture fair test as the best-fit model for predicting Raven‘s Progressive 

Matrices. Ridge regression is not typically implemented within a variable selection algorithm, so 

it was implemented by including all 9 predictors. Table 1 presents the fit indices from the cross-

validation exercise. Table 2 presents the probability that each parameter was recovered for N/2. 

 


